

Clearing the Air:

An Overview of U.S. Mobile Source Emissions Research

Tom Long

Part of the whole

Research

Implement

Regulate

Model

How well does this work?

Clean Air Act 1970 to 2012

Vehicle Miles
Travelled
+165%

- Particulate Matter (PM)
- 2. Carbon Monoxide (CO)
- 3. Ozone
- 4. Lead
- 5. Nitrogen Dioxide (NO₂)
- 6. Sulfur Dioxide (SO₂)

Regulations 1970-2010

Light-Duty Vehicles

- Clean Fuel Fleet -- exhaust emission standards
- Clean Fuel Fleet flexible fuel and dual fuel vehicles non-methane organic gas standards
- Tier 0, Tier I, and Clean Fuel Vehicle (CFV) exhaust emission standards (light-duty trucks only)
- Tier 0, Tier I, and National Low Emission Vehicle (NLEV) implementation schedule
- Tier 0, Tier 1, NLEV, and CFV exhaust emission standards
- Tier I and NLEV Supplemental Federal Test Procedure (SFTP) exhaust emission standards
- Tier I and NLEV evaporative emission standards and implementation schedule
- Tier 2 and interim non-Tier 2 SFTP exhaust emission standards
- Tier 2 evaporative emission standards
- Tier 2 exhaust emission standards and implementation schedule

Motorcycles

- Highway motorcycles -- exhaust emission standards

Regulations since 2010

- Heavy-Duty Highway Engines and Vehicles
 - Clean Fuel Fleet -- exhaust emission standards
 - Compression-ignition (CI) engines and urban buses -- exhaust emission standards
 - Spark-ignition (SI) engines -- exhaust emission standards
 - CI and SI engines -- evaporative emission standards

Regulations since 2010

- 2012 Light-Duty Greenhouse Gas & Fuel Economy Standards: MY 2017-2025
 - Decrease in light-duty energy consumption rates starting MY 2017
- Tier 3 Motor Vehicle & Fuel Standards Program: MY 2017-2025
 - Decrease in light-duty and medium-duty emission rates starting MY 2017 and 2018 respectively
 - Gasoline fuel sulfur level of 10 ppm on average starting CY2017
 - Incorporated new fuel effects model in MOVES2014
 - Significant reductions in evaporative hydrocarbon emissions from lower diurnal and hot soak emissions, and reduce prevalence of vapor and liquid leaks
- Heavy-Duty Greenhouse Gas & Fuel Economy Standards: MY 2014-2018
 - Decrease in heavy-duty energy consumption rates starting MY2014+
 - Decrease in criteria pollutant emissions as a result of mass reduction and lower aerodynamic drag and rolling resistance
 - Increase use of auxiliary power units

Emission Test Programs & Data

- Fuel Effects Programs
 - HD diesel chassis testing (CRC E-55/59)
 - EPAct study on gasoline fuel effects
 - EPA In-Use Sulfur Test Program
 - E85 emission effects
 - Updated MOVES renewable fuel usage and future fuel supply based on AEO2014 early release and RFS

Emission Test Programs & Data

- Speciation and Temperature Effects Programs
 - Kansas City Light-duty Gasoline Study (CRC E-69)
 - EPA Cold Temperature Study
 - EPAct
 - fuel effects for major air toxics
 - EPAct speciation profiles
 - Advanced Collaborative Emissions Study
 - Diesel Unregulated Emission Characterization (CRC E-75)
 - CNG chassis tests (CARB studies)
 - MHDDT Biodiesel Speciated Fuel Effects (2014)
 - Light-duty Truck Towing Study (2015)

Ambient Temperature Effects

Fuel Effects (EPAct)

Criteria pollutant emission rates

Fuel Effects (EPAct)

Aldehyde emission rates

Fuel Effects (EPAct)

BTEX emission rates

Grade and Load Effects

Grade and Load Effects

PM: Fuel, Temperature, Driving Effects

Advanced analytical techniques provide speciated PM emissions by operating conditions. Cold temperatures/cold start and high acceleration increased PAH emissions more than saturated-HCs

Beyond the tailpipe

- Transportation research in ORD integrates many disciplines to meet scientific and programmatic needs on emissions, air quality, exposures, and health effects
- This research also addresses broader scientific questions and community planning issues
 - What mitigation can reduce/eliminate public health concerns related to traffic emission exposures?
 - How can we design more sustainable transportation systems?
 - How can we promote more healthy, livable communities?
- Transportation research in ORD primarily implemented through two programs:
 - Air, Climate and Energy (ACE)
 - Sustainable and Healthy Communities (SHC)

Beyond the tailpipe

- Air Quality and Exposures Near Major Transportation Facilities
 - Highways
 - Railyards
 - Ports
- Air Quality and Adverse Health Effect Associations
- Effectiveness of Mitigation Strategies
 - Emission standards
 - Reduced vehicle activity
 - Roadway design
- Brake and Tire Wear

An Example of the System

Research

Implement

Regulate

Model

Example

Tier 2 Regulations

Future Work/Directions

- Multiple Sectors
 - On-road transportation
 - Personal vehicles
 - Freight movement
 - Rail/Railyards
 - Marine Ports (coastal and inland)
 - Airports/Aircraft
- Land Use and Transportation Planning
- Climate impacts and mitigation

The End

- Acknowledgements for Contributions
 - Richard Baldauf
 - Mike Hays
 - Megan Beardsley